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Energy Consumption

Energy is fundamental for today’s society: Nuclear, Fossil Fuel, Wind, Solar, Hydropower, etc

WORLD ENERGY U.S. ENERGY
CONSUMPTION CONSUMPTION
TRANSPORTATION
28%

_ 100.2

(quadrillion BTUs)

* United States Primary energy consumption per sector. (2010 Buildings Energy Databook, US. DOE, March 2011)

1 Quadrillion British Thermal Unit (BTU) = 8 Billion Gallons of Gasoline = 50 million tons of coal.

50 Miillion tons of coal = a pile 10 feet thick, one mile wide and 3.3 miles long.

Vincent Blouin, vblouin@cl



Energy Consumption
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Energy Storage

* Use “heavy” materials to absorb extra heat when available, store it, and release it
when needed.

* Heavy materials (stones, concrete, bricks)
* The process is reversible and also works for passive cooling.

e Terminology:

— Energy storage, heat storage

Peak Temperature Delayed Peak Temperature Reduced

— Thermal mass
— Thermal inertia
— Activation of thermal mass

— Latent heat vs. sensible heat

— Phase change materials (PCM)

. Day-time Night—ti;;e Day-time
— Evaporation -

External Temperature
e = e = Internal Temperature - Low Thermal Mass

— Heat capacity, specific heat of materials Tnternal Temperature - High Thermal Mass




Two ways to store energy

* Sensible heat: energy is stored in the form of heat by raising the
temperature of the storing material.

— stones, concrete, and bricks

* Latent heat: energy is stored in the form of a change of phase of the
storing material. Examples:

— water absorbs a lot of energy when evaporating (i.e., changing phase from liquid to
vapor) and releases a lot of energy when condensing (i.e., change phase from vapor to
liquid)

— phase change materials absorb heat when changing phase (usually from solid to liquid)
 Both ways are used in buildings for passive heating and cooling. Sensible

heat is used all the time. Use of latent heat is not as popular because it is
not as straight forward and usually requires more expensive materials.
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Typical Thermal Mass Storage Materials

Temperature increase: 1°F
Typical Volume to store | Weight to store
Material thickness (in) 100 Btu (ft3) 100 Btu (lbs) Comments
Inexpensive,
Water N/A 0.50 31 container required
Concrete 2-18 1.00 147 Also structural
Brick 4-18 1.28 156 Also structural
Concrete Masonry Unit
(CMU) 12-18 1.44 136 Also structural
Inexpensive,
Stone (loose fill) 4-12 1.78 156 container required
Volume to Store 100 Btu (ft3) Weight to Store 100 Btu (lbs)
1.78
147 156 156
1.44 136
1.28
1.00
0.50
O -
Water Concrete Brick Concrete  Stone (loose fill) Water Concrete Brick Concrete  Stone (loose fill)
Masonry Unit Masonry Unit
(CMU) (CMU)




Phase Change Materials

Benefits

High heat storage capacity to weight ratio

High heat storage capacity to thickness ratio

Greater architectural freedom

%"”-thick gypsum board (drywall) with 25%
PCM (right) can store as much energy as a
4”-thick brick wall of same surface area

PCM
brick

sandstone
concrete
wood

gypsum

cork

mineral wool
EPS

thickness in cm equivalant to 1cm of PCM



Phase Change Materials

Three Types
Macro-encapsulation Micro-encapsulation Form-stable PCMs

PEG-CDA




Phase Change Materials

Three Types

Macro-encapsulation

BioPCM™ layered on top of BioPCM™ is affordable, earth-friendly and
insulation in a standard wood easy-to-install. It's the next generation of
frame structure. high-performance energy savings material.




Three Types
Micro-encapsulation

Mixed in
cellulose
insulation

ISE 5.0kV 34.5mm x2.00k SE(L)

Mixed in plaster




Phase Change Materials

PCM materials
~2000 materials reported in literature

~200 materials appropriate in building
* Perlite embedded with hydrated calcium chloride
Paraffin
* Paraffin compounds (linear crystalline alkyl hydrocarbons)
* Polyalcohols (do not leak but volatile during phase change)
* Fattic acid with polymeric encapsulation (PMMA)

[ Salt Hydrates
Phas_e Chw]ge Mﬂtﬂrials I Tevmwimwommain £ mearmrseado AMntallins I

=4 Organic Compounds Fatty Acids

* Polyethylene glycol (PEG)

Material Melting Latent heat
point ("C) (klVkz)
K,HPO,-6H,0 14.0 109
FeBrs-6H,0 21.0 105
. Mn(NOs)»6H,0 25.5 148
Latent heat capacity " FeBry-6H,0 7.0 105
50kJ/kg - 200kJ/kg. CaCly-12H0 29.8 174
LiNO;-2H,0 30.0 206
25kJ/kg and 50kJ/kg when mixed in construction n LiNOs-3H,0 30 189
Na>CO+10H-0 32.0 267
Na,S0,-10H,0 32.4 241
_ _ KFe(S04).-12H,0 33 173
200 kJ/kg = 100 BTU/Ib = 25,000 cal/lb CaBr.61LO iy 138
LiBr,-2H,0 34 124
Zn(NOs)»6H-0 36.1 134

FeCl,-6H,0 37.0 223



Temperature (°C)

How do they work?

Tm

Liquid
Melting
Crystallization o
Solid phase Phase change Liquid phase
Sensible heat Latent heat Sensible heat
\ N /
Energy stored

Encapsulated PCM

PCM
(liquid/solid)

Polymer shell
(capsule)

Melting temperature T, is
between 15°C and 30°C
depending on the application.
There exist different PCM
materials for any desired
melting temperature.

The process is 100% reversible. The temperature decreases as the energy is released.



Use of PCM

Purpose: Temperature regulation o

Buildings
Transportation
Electronics
Clothing

4/20



Dover House, MA, 1947
@Q (source: Sherburne, 2009)

* PCM — Glauber’s Salt (Na,So,. 10H,0)

* Melt temperature: 89°F

» 18 solar collectors, 21 Tons of PCM.

« 520,000

* “Complete Comfort” for two winters without a fuel bill
* PCM stratified during the third winter.

City of Melbourne’s
Council House



Examples of Buildings with PCM

First Place 2007 Solar Decathlon:
Steve Glenn's Santa Monica house, first Technische Universitit Darmstadt

house platinum LEED

] T e AR
2009 Solar Decathlon
Penn State


http://bp0.blogger.com/_fuyBWGeyC9U/RtaVRk3mNJI/AAAAAAAAAWA/H3RZaZr4G1s/s1600-h/04_glenn.jpg

New Products

Prismatic
filter

Summer sun high
in the sky (> 40°)
Total reflection
of the rays
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Shallow winter
sun (< 35°)
Loss-free passage

: of the rays

N

N

http://glassx.ch/index.php?id=578

SRS ZZ X

SN R =S
.

/A

EXTERIOR

GlassX Crystal - Quadruple-glazed
window includes PCM

i
////

LLI L




Increased Insulation vs. PCM

Increasing Insulation is known to be beneficial

The higher the R-value, the low the heat gain/loss
HOWEVER, not proportional!
Q-= A(Tout'Tin)/ R
where Q= heat gain or loss
A = surface area
Toue Tin = Temperatures
R = R-value
The benefit of additional insulation decreases with the amount of insulation.



Increased Insulation vs. PCM

Benefits of PCM

Most studies found that PCM improve building energy performance
- by reducing peak-hour cooling loads
- by shifting peak-demand time.

Can reduce heat and cooling load between 10 and 30%

Financial payback period is 5 to 10 years

Energy payback period is 5 to 10 years

Save S since save heat and cooling energy

Save SS if on-peak/off-peak billing cycle is adopted but does not help the
planet

Cons of PCM
New technology
No guidelines exist / limit knowledge
Reliable durability is still uncertain



Example of Cost of PCM

Standard 2,434 sq ft house with 730 sq ft Basement, Gas Furnace, Central Air-conditioning

Heating and cooling cost per yr. Location: Louisville KY"

1643 therms Natural Gas (@ average retail price of $1.30 per therm™ $2136.00
10623 kWh (@ average retail price” 9.45 $1004.87
Yearly Total $3140.87
Monthly expenditure $262.67

PCM 2,434 sq ft house with 730 sq ft Basement, Gas Furnace, Central Air-conditioning

Heating and cooling cost per yr. Location: Louisville KY

1150 therms Natural Gas @ average retail price of $1.30 per therm’ $1495.00
7436 kWh (@ average retail price” 9.45 $702.70

Yearly Total $2197.70
Monthly expenditure $183.14

Yearly Energy Savings for home with PCES BioPCM =$ 943.17
http://www.phasechange.com/whitepages-page.php
Some Additional Benefits from the use of BioPCM sheet:
- Tax benefits

 Lower cost for HVAC equipment Most beneficial with different billing cycle:

- Lower construction costs $0.12 /kWh during day
- Energy Efficient Mortgage $0.07 /kWh during night
- Reduced energy costs



Research Project

Resea rCh GO&' National Science Foundation

* Increase knowledge by developing design guidelines for integrating PCM in
buildings.

Research Questions

* For any given climate, what are the optimum:
o PCM melting temperature
o amount of PCM
o location of PCM

* What other parameters affect the integration of PCM.



Research Project

Experimental Design fditon__~

1) Control : ¥
- Annual Energy Py - //2

Consumption without /wmn
/IDEAL Ibemostee adiation Rad|at|on
PCM — Radiat ‘;\ /’ -

LOADS

2) Treatment
- Annual Energy Consumption
with different combinations of
PCM |
a) melt temperature
b) energy storage capacity
c) location within the walls
d) location within the room

4\-\ == =|nfiltration
Sy

¥ i
- .

Data collection

Finite Element Analysis (FEA)

Computational Fluid Dynamics (CFD)

Whole building energy modeling software - EnergyPlus




Research Project

Numerical modeling

Modeling the thermal behavior of PCM in building is validated by comparing results
obtained by different techniques: Abaqus (FEA) vs. EnergyPlus (FD)

ABAOUS Finite Element Numerlcal Scheme

Temperature (deg C)

Time (sec) \

EnergyPlus — Finite Difference Numerical Scheme

/ \ / "\ / \ /
[\ [\ [\ /
=\ =\ =\ [,

8

Temperature (deg C)
58 8 8

a
1 32 5 7 9 111315171921 232527 2931333537 323941434547 4951535557 59616365676971 737577798183

South Wall Surface Outside Temp Time (h)

South Wall Surface Inside Temp

Roof Surface Outside Tem perature

Roof Surface Inside Temperature

23



Example numerical simulation
Latent heat of PCM: 20 kJ/kg

Temperature of walls without PCM

A A

)
~_/

i

Y y
\
f’f

Temperature
— !
A

perature
lations

:|5.1°C

Temperature

| Temperature
| fluctuations
AT =3.5°C

Time (4 day simulation)

Benefits of PCM:

Smaller temperature
fluctuations

Smaller duration at extreme
temperatures

Reduced cooling/heating load
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Research Project

Base Building Model - ANSI/ASHRAE/IESNA Standard 90.1/90.2 — 2004
a) Floor Area: 576 Sq ft. - ASHRAE — Advanced Energy Design Guides

Lightweight construction
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Research Project

b) 30% window/wall ratio
East/west orientation
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Research Project

c) Internal Loads
Computers
Lights

People
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Research Project

d) Minimum Air Change Rate
0.35 AC/H

\




Research Project

Dependent Variable

Independent Variables:

Annual Energy Consumption (Y) a) PCM Melting Temperature (X,) — 18-29 degrees

Regression Model b) PCM Enthalpy (X,)—50, 100, 150 KJ/Kg

Y=Bo+ByX; + By X,

Treatment
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_W_r__ - o Wall
|
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Dependent Variable Independent Variables:

Annual Energy Consumption (Y) a) PCM Melting Temperature (X,) — 18-29 degrees
b) PCM Enthalpy (X,)— 50, 100, 150 KJ/Kg

Regression Model c) Layers (X5) — Interior, Interstitial, Exterior

Y =B+ By Xy + By X, + B Xy

R
Treatment T
/%Zéﬁf/»/ } \\\\\Q‘
/4//::;//// - = > \\\\\
e >~ SN
— ~. \§\\
— < 5 S
= ~ J %\

\

\

/
b O

e = =S

I JT/i = = = Eiss \\X\*&K

i = E S

S // -t | i 1 |

LTI T e B

| | | |

~\ | “\ ﬂ J / 3

LT et e

_— *'4\-::’;4:::);{;“ . L ‘_/J éjggs; = ; //"
L 3 P




Dependent Variable

Annual Energy Consumption (Y)

Regression Model

Y=PBg+ By Xy + By Xy + Ba X5 + By Xy

Treatment

Independent Variables:

a) PCM Melting Temperature (X,) — 18-29 degrees
b) PCM Enthalpy (X,) — 50, 100, 150 KJ/Kg
c) Layers (X5) — Interior, Interstitial, Exterior
d) Surfaces(X,) — High Radiation, Low Radiation, All Surfaces
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Dependent Variable

Annual Energy Consumption (Y)

Regression Model

Y =Bo+By.Xy+ By X+ By Xy + By Xy + Bs.Xs

Independent Variables:

a) PCM Melting Temperature (X,) — 18-29 degrees

b) PCM Enthalpy (X,) — 50, 100, 150 KJ/Kg

c) Layers (X5) — Interior, Interstitial, Exterior

d) Surfaces(X,) — High Radiation, Low Radiation, All Surfaces

e) Length to Width Ratio (Xs) — >>1, 1, <<1

Treatment ri e
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Factorial Design

Factors (Independent variables)

Levels

PCM Melt temperature
Location in the room
PCM enthalpy
Location within the wall

Length to Width Ratio

3 (18, 19, 20) (21, 22, 23) (24, 25, 26) (27,28,29)
3 (High Radiation, Low Radiation, All walls)
3 (20 KJ/Kg, 30 KJ/Kg, 40 KJ/Kg)
3 (Interior, Interstitial, Exterior)

3(>>1, 1, <<1)

* Control: Building without PCM

* Treatment: Building with different combinations of PCM

* Dependent Variable: Annual Energy Consumption (Heating & Cooling)

* Independent Variables: 5 Factors - 3 levels each = 3° experiments = 243 experiments * 4= 972

Experiments ( One Climate).

Goal: The development of response curves and design guidelines for the use of PCM in buildings.



U.S. Department of Energy: Climate Zones

Climate Zones

Warm-Humid
below white line

Hawaii ™ 3




U.S. Department of Energy: Representative Cities

A

> | 2 B >
Marine' Dry Moist

R —

5 &

Seattle —,—om
5 ged

Helena

Boise

Baltimore
San Franscisco
Memphis
Phoenix L\ A fj P e
El Paso | Houston kL \[
l o Miami
Albuquerque - Hawaii

%

972 experiments * 15 representative cities = 14580 experiments



Life Cycle Analysis of PCM

Life Cycle Analysis consists of analyzing all aspects of a product from craddle to
grave in terms of cost, energy and environmental impact.

“Going green” is sometimes misleading when embedded energy is not considered.
Always beneficial for the owner but not always for the planet.

Macro-encapsulation = low embedded energy
Micro-encapsulated = large embedded energy
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Synthesis and Characterization of Solid-Solid PCM

Background

* Solid-liquid PCM require encapsulation, are costly and have high embodied
energy.

* Solid-solid PCM (SSPCM) are expected to be better alternatives.

* PEG-PU is a PCM polymer made of Polyethylene Glycol (PEG) and a
polyurethane polymer (PU) or cellulose diacetate (CDA).

* Energy storage and release are due to change of phase from the semi-
crystalline phase to the amorphous phase of PEG.

* When grafted to a backbone polymer, the amorphous PEG remains solid at
high temperature.

PEG%DU 0 e PEG-CDA

£
b
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Solid-Solid Phase Transformation by cross-linking

Semi-crystalline state
(lamellae)

Amorphous state

Pure
PEG

(macro-fluidity = liquid)

Cross-
linked
PEG

Remains solid

Increase temperature
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Synthesis and Characterization of Solid-Solid PCM

Research goals

* Understand the synthesis process of PEG-PU and PEG-CDA.

* Characterize thermo-mechanical properties.

* Understand the phase change process in order to control the phase change
temperature, maximize enthalpy, optimize mechanical properties, and
minimize environmental impact.

Why focus on Polyethylene Glycol (PEG) as a PCM polymer?
* Non-toxic, biocompatible and biodegradable
* Hydrophilic
* -OH end groups allow easy chemical modification
* Crystallizes easily thanks to simple linear polymer chain
* Ample production at various molecular weights from 0.3
to 10,000 kg/mol



ARCHITECTURE FOCUS
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PEG-PU Synthesis

 PU includes isocyanate groups (NCO) and hydroxyl groups (OH)

* Dissolve PEG by 1/3 wt%

 Heat to 50-60°C and purge with Nitrogen

e Add stoichiometric amounts of TDI and BDO

e Reflux for 30 minutes

» Before the gelation occurs pour into mold and either place in oven or hot press
* Let cool until sample gel hardens
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PEG-CDA

* PEG grafted onto the Backbone of Cellulose Diacetate (CDA)

e Cellulose Diacetate is a thermally stable polymer that remains intact
above PEG melting temperature

PEG ————>
(PCM)

CDA
(Backbone)
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Length of chain and crystallization

Smaller molecular weight of PEG leads to shorted chains
Shorter chains result in lower phase change temperature (which is desirable)

However, steric hinderance reduces length useful chain where crystallization
occurs, which reduces the enthalpy / latent heat (which is not desirable)

One goal is to reduce effect of steric hinderance

Toluene diisocyanate / Poly(ethylene oxide) chain
Hard segment /'soft:segment:

/
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Differential Scanning Calorimetry (DSC)

* Measure melting and crystallization temperatures and enthalpy values

1

7

g MW = 4,600 g/mol MW = 6,000 g/mol MW = 10,000 g/mol
N T, =51.3°C T, =55.5°C T, =59.2°C
- H,, = 90.3 J/g H,, = 107.4 J/g H,, = 131.7 J/g
5 ] T. = 43.1°C T. = 44.9°C T, =51.4°C
+ H.=91.1J/g H.=101.9 J/g H.=130.3 J/g
3 Melting temperature and enthalpy
decrease with molecular weight
_ PEG-CDA 46K
PEG-CDA 6K
-——— PEG-CDA 10K
_40"'1'0"'2'0' 30 40  s0 e 70

Exo Up
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Polarized Optical Microscopy (POM)

POM is used to visualize and identify the crystal structure

At room temperature, both pure PEG and PEG-PU show spherulites
Spherulites in PEG-PU are smaller because hard segments interfere with PEG

crystalline behavior
At 70°C, the spherulites disappear since crystals have melted
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Dynamic Mechanical Analysis (DMA)
e DMA is used to characterize the viscoelastic behavior of PEG-PU over
temperature range

12U
i PUFEG 4000 run3.001
D_ynam_lc PUFEG 2000 runi.001 |
sinusoidal PUPEG 10000 runi_ 001

Loss Modulus (MPa)

stress (1 Hz) i
100
— 50

T T T I T T T T T T T T T T T T T T T -50
10 20 30 40 50 6048
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Summary

* Research project involving students and faculty from architecture and
engineering collaborate to identify best materials and practice

* This on-going project has the potential to promote use of PCM by providing a
unified set of design guidelines (reduced need of engineering studies)

* PCM can reduce the energy footprint of buildings. However:
- PCM have high initial cost

- Some PCM have large embodied energy

e PCM should be a common construction material in the future
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